The Crystal Structure of $\mathbf{M g N b}_{14} \mathbf{O}_{35} \mathbf{F}_{\mathbf{2}}$

MONICA LUNDBERG
Institute of Inorganic and Physical Chemistry, University of Stockholm, S-113 86 Stockholm, Sweden

Received September 4, 1969

Abstract

A phase analysis of the system $\mathrm{MgF}_{2}-\mathrm{Nb}_{2} \mathrm{O}_{5}$ has revealed the existence of the compound $\mathrm{MgNb}_{14} \mathrm{O}_{35} \mathrm{~F}_{2}$. The crystal structure has been solved from three-dimensional Weissenberg data and refined by least-squares technique. The symmetry is monoclinic, space group $C 2 / m$ and the unit cell dimensions: $a=20.628 \AA ; b=3.825 \AA ; c=19.098$ \AA and $\beta=107.75^{\circ}$. The structure contains metal-oxygen (fluorine) octahedra which are linked by corners to form blocks measuring $5 \times 3 \times \infty$ octahedra. The blocks are mutually connected along planes of crystallographic shear by octahedra sharing edges. The structure represents the previously missing member $n=5$ of a series of monoclinic block structures $\mathrm{Me}_{3 n} \mathrm{X}_{8 n-3}$ found in the $\mathrm{TiO}_{2}-\mathrm{Nb}_{2} \mathrm{O}_{5}$ system by Wadsley.

Introduction

The phase equilibrium relations and the crystal structures of the phases in the system $\mathrm{TiO}_{2}-\mathrm{Nb}_{2} \mathrm{O}_{5}$ have been studied by Wadsley (1), (2), (3) and Roth (3). They found no large solubility of TiO_{2} in $\mathrm{Nb}_{2} \mathrm{O}_{5}$.

A phase analysis of the system $\mathrm{MgF}_{2}-m \mathrm{Nb}_{2} \mathrm{O}_{5}$ was, therefore, started to examine whether the conditions are the same in this system. The result of the phase analysis showed the existence of a phase with a composition corresponding to an m value of about 7. The Guinier X-ray powder pattern showed great resemblance to those of two substances, $\mathrm{TiNb}_{2} \mathrm{O}_{7}$ and $\mathrm{Ti}_{2} \mathrm{Nb}_{10} \mathrm{O}_{29}$, belonging to a homologous series of shear structures, $\mathrm{Me}_{3 n} \mathrm{X}_{8 n-3}$, reported by Wadsley (1), (2). An X-ray crystallographic investigation was now started to find the structure and to establish the chemical character of the new compound.

Experimental

Crystals of the new compound were prepared by mixing of MgF_{2} (Merck's reagent, pro analysi) and $\mathrm{H}-\mathrm{Nb}_{2} \mathrm{O}_{5}$ (Kawecki, 99.99%) in a $1: 7$ ratio. The sample was heated in a sealed platinum tube at $1000^{\circ} \mathrm{C}$ for two days. The material thus obtained consisted of rod-shaped, colourless crystals.

The unit cell dimensions determined from a Guinier X-ray powder pattern ($\mathrm{CuK} \alpha_{1}$ radiation) were: $a=20.628 \AA \pm 10 ; b=3.825 \AA \pm 2 ; c=19.098$
$\AA \pm 10$, and $\beta=107.75^{\circ} \pm 2$. The indexing of the powder photograph is listed in Table I.

The observed density measured by the apparent loss of weight in benzene is $4.41 \mathrm{~g} \mathrm{~cm}^{-3}$. With two units of $\mathrm{MgF}_{2}-m \mathrm{Nb}_{2} \mathrm{O}_{5}$ per elementary cell this would correspond to a value of $m=6.94$. The density value calculated for the stoichiometric formula $\mathrm{MgNb}_{14} \mathrm{O}_{35} \mathrm{~F}_{2}$, thus derived for the phase, is 4.45 $\mathrm{g} \mathrm{cm}^{-3}$.

No real single crystal could be found. Thus, the intensity data were collected from a very small twin with a Weissenberg camera using filtered $\mathrm{CuK} \alpha$ radiation. The $h 0 l, h 1 l$ and $h 2 l$ reflexions were recorded by multiple film technique. After separation of the two interpenetrating reciprocal lattices only the reflexions from one of the crystals were visually estimated by means of a standard scale. The $00 l$ reflexions from the twin-individuals overlapped exactly. The contributions from these were determined by measurement of several equivalent noncoincident reflexions.

Structure Determination

The Weissenberg photographs showed monoclinic symmetry with systematic absences $h k l$ when $h+k \neq 2 n$. This condition gave the space group alternatives $C 2, C m$, and $C 2 / m$. The distribution of $h 0 l$ and $h 2 l$ intensities with due regard for observational errors and for the effects of thermal motion seemed to be identical. All the atoms were, therefore,

TABLE I
The Guinier Powder Pattern of $\mathrm{MgNb}_{14} \mathrm{O}_{35} \mathrm{~F}_{2}$ ($\mathrm{CuK} \alpha_{1}$ Radiation)

I	$\sin ^{2} \theta_{\text {obs }}$	$h k l$	$\sin ^{2} \theta_{\text {calc }}$
w	0.00592	201	0.00592
$v w$	0.00618	200	0.00615
$v w$	0.00719	002	0.00717
w	0.01615	003	0.01614
m	0.02234	401	0.02234
m	0.02871	004	0.02869
$v s t$	0.04206	110	0.04209
m	0.04282	111	0.04287
$s t$	0.04482	005	0.04484
$s t$	0.05033	602	0.05036
w	0.05116	601	0.05106
m	0.05308	311	0.05314
m	0.05566	312	0.05548
$v w$	0.06118	205	0.06111
w	0.07481	114	0.07483
$s t$	0.07563	511	0.07571
w	0.07894	510	0.07898
$v w$	0.07952	313	0.07964
w	0.08339	606	0.08345
w	0.08922	802	0.08935
w	0.09040	803	0.09022
w	0.09531	314	0.09523
w	0.10844	604	0.10833
m	0.11063	711	0.11057
$s t$	0.13884	803	0.13882

assumed to be situated in planes perpendicular to the y axis, a distance of $b / 2$ apart. The higher symmetry, $C 2 / m$, was tentatively assumed for the structure investigation. The length of the b axis, $3.83 \AA$, suggested the structure to be built up of layers of polyhedra linked by sharing corners and edges.

The appearance of the Weissenberg photographs gave further support to the idea of a structural relationship existing between the investigated compound and the ternary titanium-niobium oxides in the homologous series $\mathrm{Me}_{3 n} \mathrm{X}_{8 n-3}$ reported by Wadsley (1), (2). The latter structures may be described in terms of blocks consisting of MeX_{6} octahedra linked by corners as in the ReO_{3} type. The blocks are of finite extension in two dimensions, measuring 3×3 and 3×4 octahedra and infinite in the third dimension. The blocks are joined by octahedra sharing edges in a complicated way (v. inf.).

The symmetry of $\mathrm{TiNb}_{2} \mathrm{O}_{7}$ and $\mathrm{Ti}_{2} \mathrm{Nb}_{10} \mathrm{O}_{29}$ was given by Wadsley as $A 2 / m$. The space group of $\mathrm{MgNb}_{14} \mathrm{O}_{35} \mathrm{~F}_{2}$ is the same but the discussion of this compound will be in terms of the C-centered
setting used in the International Tables of Crystallography. The c and b axes of the two titaniumniobium oxides are very nearly the same which reflects the common finite extension of three MeX_{6} octahedra of the building blocks of these substances. The corresponding figures for the a and b axes of $\mathrm{MgNb}_{14} \mathrm{O}_{35} \mathrm{~F}_{2}$ have rather similar values suggesting blocks of this extension to be present also in this material. The extension in the third dimension of the three phases ($a \sin \beta$ and $c \sin \beta$) increase regularly in the order $10.31 \AA\left(\mathrm{TiNb}_{2} \mathrm{O}_{7}\right), 14.27 \AA$ ($\mathrm{Ti}_{2} \mathrm{Nb}_{10} \mathrm{O}_{29}$), and $18.19 \AA\left(\mathrm{MgNb}_{14} \mathrm{O}_{35} \mathrm{~F}_{2}\right)$, which suggests that the block size of the latter is five octahedra in this direction.
The idea thus arrived at was tested by comparison of the observed unit cell dimensions for $\mathrm{MgNb}_{14} \mathrm{O}_{35} \mathrm{~F}_{2}$ with the corresponding data for the hypothetical member $n=5$ of the monoclinic homologous series $\mathrm{Me}_{3 n} \mathrm{X}_{8 n-3}$:

	a	b	c	c
obs	$20.628 \AA$	$3.825 \AA$	$19.098 \AA$	107.75°
calc	$20.50 \AA$	$3.80 \AA$	$19.45 \AA$	108.5°

The point positions used in the space group $C 2 / m$ are the following:

$$
\begin{aligned}
& \left(0,0,0 ; \frac{1}{2}, \frac{1}{2}, 0\right)+ \\
& 4(i) \quad m \quad x, 0, z ; \bar{x}, 0, \bar{z} \\
& 2(d) \quad 2 / m \\
& 2(c) \\
& 2 / m
\end{aligned} \quad 0, \frac{1}{2}, \frac{1}{2}, \quad, 0, \frac{1}{2} .
$$

All the atoms except two metal and two nonmetal atoms of the hypothetical structure occupy $4(i)$ positions, while the remaining atoms occupy the special positions $2(c)$ and $2(d)$, respectively. The coordinate values for the various atoms were calculated by analogy with the data reported for the titanium-niobium oxides.
The preliminary structure factors calculated under the assumption of random occupancies of the metal as well as the nonmetal atom sites were found to be in acceptable agreement with the observed structure factors. Least-squares techniques were applied to refine the parameter values on the basis of the 216 independent reflexions from the $h 0 l$, $h 1 l$, and $h 2 l$ layer lines. Owing to the relatively great number of parameters all temperature factors were fixed at $0.5 \AA^{2}$ for the metal atoms and $1.0 \AA^{2}$ for the anions, during the first stages of refinement. The R value dropped to 10.8%. Finally, individual isotropic temperature factors for the metal atoms were included in the refinement. The R factor obtained was 6.4%. The atomic parameters are given in Table II. The observed and calculated structure factors are listed in Table III.

TABLE II
Atomic Parameters in $\mathrm{MgNb}_{14} \mathrm{O}_{35} \mathrm{~F}_{2}-$ Space Group $C 2 / m$

Atom	Position	x	y	z	B	σB
Me(I)	$4(i)$	0.0630	0	0.0787	0.91	0.35
Me(II)	$4(i)$	0.1935	$\frac{1}{2}$	0.0791	2.61	0.44
Me(III)	$4(i)$	0.3736	$\frac{1}{2}$	0.0718	0.62	0.40
Me(IV)	$4(i)$	0.1208	0	0.2893	0.94	0.41
Me(V)	$4(i)$	0.2515	$\frac{1}{2}$	0.2838	-0.29	0.33
Me(VI)	$4(i)$	0.4413	$\frac{1}{2}$	0.2971	0.10	0.42
Me(VII)	$4(i)$	0.1841	0	0.4991	0.20	0.51
Me(VIII)	$2(c)$	0	0	$\frac{1}{2}$	1.47	1.08
X(I)	$4(i)$	0.0857	$\frac{1}{2}$	0.0625		
X(II)	$4(i)$	0.1565	0	0.0429		
X(III)	$4(i)$	0.2700	$\frac{1}{2}$	0.0681		
X(IV)	$4(i)$	0.0878	0	0.1926		
X(V)	$4(i)$	0.2252	$\frac{1}{2}$	0.1873		
X(VI)	$4(i)$	0.4105	$\frac{1}{2}$	0.1665		
X(VII)	$4(i)$	0.1428	$\frac{1}{2}$	0.2790		
X(VIII)	$4(i)$	0.3413	$\frac{1}{2}$	0.2788		
X(IX)	$4(i)$	0.4271	0	0.2664		
X(X)	$4(i)$	0.1588	0	0.3895		
X(XI)	$4(i)$	0.2904	$\frac{1}{2}$	0.3924		
X(XII)	$4(i)$	0.2261	0	0.2916		
X(XIII)	$4(i)$	0.4692	$\frac{1}{2}$	0.0482		
X(XIV)	$4(i)$	0.3598	0	0.0470		
X(XV)	$4(i)$	0.0896	0	0.5068		
X(XVI)	$4(i)$	0.4647	$\frac{1}{2}$	0.3897		
X(XVII)	$4(i)$	0.0321	0	0.2829		
X(XVIII)	$4(i)$	0.2046	$\frac{1}{2}$	0.5228		
X(XIX)	$2($ d $)$	0	$\frac{1}{2}$	$\frac{1}{2}$		

Discussion

The structure determination fully confirms the assumption that $\mathrm{MgNb}_{14} \mathrm{O}_{35} \mathrm{~F}_{2}$ represents the $n=5$ member of the monoclinic homologous series $\mathrm{Me}_{3 n} \mathrm{X}_{8 n-3}$. Thus, the structure consists of blocks of ReO_{3} type which extend in the ac plane over 5×3 octahedra and are of infinite length along the b axis. The structural principles for the series $\mathrm{Me}_{3 n} \mathrm{X}_{8 n-3}$ are demonstrated by idealized drawings of the three compounds $\mathrm{TiNb}_{2} \mathrm{O}_{7}, \mathrm{Ti}_{2} \mathrm{Nb}_{10} \mathrm{O}_{29}$, and $\mathrm{MgNb}_{14} \mathrm{O}_{35} \mathrm{~F}_{2}$ in Fig. 1 .

The distortions of the octahedra are shown in Fig. 2 and the metal-anion distances are given in Table IV. In spite of a wide variation among the metal-anion distances the average value, $2.00 \AA$, is very similar to the distances found in $\mathrm{H}-\mathrm{Nb}_{2} \mathrm{O}_{5}$, $1.99 \AA$ (4), in $\mathrm{N}-\mathrm{Nb}_{2} \mathrm{O}_{5}, 2.01 \AA$, (5), and in $\mathrm{Nb}_{3} \mathrm{O}_{7} \mathrm{~F}$, $1.97 \AA$, (6). The anion-anion distances within the octahedra vary between $2.36-3.30 \AA$ (σ around $0.15 \AA$). The shortest distances occur for shared edges, as was also observed in $\mathrm{Ti}_{2} \mathrm{Nb}_{10} \mathrm{O}_{29}$ (2).

The accuracy of the atomic positional parameters and hence also of the interatomic distances is moderate which is obviously due partly to the fact that, because of the twinning an absorption correction could not be made and partly to the number of observed data being low in relation to the number of parameters to be determined. The effect of these shortcomings of the primary material is, however, more likely to be found in the "thermal parameters." As mentioned above the structure refinement had to be carried out with a common fixed value of the B parameter of the anions. The values obtained for the metal atoms vary considerably but the e.s.d.:s are also rather high. An interpretation of these values in terms of thermal motion seems unsound. This applies also to calculations of preferred occupancy of the various sites by the two metal atom species. This appreciation of the nonphysical significance of the B-parameter values is supported by some exploratory calculations.
It is interesting to compare the present structure

TABLE III
Observed and Calculated Structure Factors for $\mathrm{MgNb}_{14} \mathrm{O}_{35} \mathrm{~F}_{2}$

$\mathrm{MgNb}_{14} \mathrm{O}_{35} \mathrm{~F}_{2}$

$\mathrm{Ti}_{2} \mathrm{Nb}_{10} \mathrm{O}_{29}$

Fig. 1. Idealized drawings of the structures $\mathrm{TiNb}_{2} \mathrm{O}_{7}, \mathrm{Ti}_{2} \mathrm{Nb}_{10} \mathrm{O}_{29}$ and $\mathrm{MgNb}_{14} \mathrm{O}_{35} \mathrm{~F}_{2}$.

Fig. 2. The crystal structure of $\mathrm{MgNb}_{14} \mathrm{O}_{35} \mathrm{~F}_{2}$ viewed along the b axis. \circ Metal atoms at $y=0$; \bullet metal atoms at $y=\frac{1}{2}$.

TABLE IV
Interatomic Distances in $\mathrm{MgNb}_{14} \mathrm{O}_{35} \mathrm{~F}_{2}$ Standard Deviations $\pm 0.15 \AA$

Distance	A	Mean value
$\mathrm{Me}(\mathrm{I})-2 \mathrm{X}(\mathrm{I})$	2.01	
X (II)	2.23	
X(IV)	2.08	2.08
X'(XIII)	1.84	
$\mathrm{X}^{\prime \prime}$ (XIII)	2.31	
$\mathrm{Me}(\mathrm{II})-\mathrm{X}(\mathrm{I})$	2.15	
2X(II)	2.10	
X(III)	1.65	2.05
X(V)	1.97	
X(XIV)	2.32	
Me(III)-X(II)	2.09	
X(III)	2.12	
X(VI)	1.74	2.01
X(XIII)	2.15	
2X(XIV)	1.97	
Me(IV)-X(IV)	1.76	
2X(VII)	1.99	
$\mathrm{X}(\mathrm{X})$	1.83	1.92
X(XIL)	2.16	
X(XVII)	1.80	
$\mathrm{Me}(\mathrm{V})-\mathrm{X}(\mathrm{V})$	1.76	
X(VII)	2.22	
X(VIII)	1.88	1.97
X(XI)	1.98	
2X(XII)	2.00	
Me(VI)-X(VI)	2.38	
X(VIII)	1.98	

Table IV (continued)
Interatomic Distances in $\mathrm{MgNb}_{14} \mathrm{O}_{35} \mathrm{~F}_{2}$ Standard Deviations $\pm 0.15 \AA$

Distance	\AA	Mean value
2X(IX)	2.00	2.00
X(XVI)	1.69	
X(XVII)	1.94	
Me(VII)-X(X)	2.00	
X(XI)	1.98	
X(XV)	2.00	2.07
2X'(XVIII)	1.98	
X'(XVIII)	2.45	
Me(VIII-2X(XV)	1.82	
2X(XVI)	2.01	1.91
2X(XIX)	1.91	

with that of $\mathrm{MoNb}_{15} \mathrm{O}_{40} \mathrm{~F}$ recently reported by Galy and Andersson (7). The latter is also a blocktype structure containing the same type of units, measuring $5 \times 3 \times \infty$ octahedra. However, in this compound, the molybdenum atoms are inserted in tetrahedrally coordinated interstices at the junctions of four blocks. Thus, although the major structural units of the two compounds $\mathrm{MgNb}_{14} \mathrm{O}_{35} \mathrm{~F}_{2}$ and $\mathrm{MoNb}_{15} \mathrm{O}_{40} \mathrm{~F}$ are identical, they join rather differently.

The $\mathrm{Ti}_{2} \mathrm{Nb}_{10} \mathrm{O}_{29}$ phase (2) and also the analogous binary niobium oxide $\mathrm{Nb}_{12} \mathrm{O}_{29}$ (8) exist in two
modifications, which bear a very close structural relation to each other. In addition to the monoclinic form described above, an orthorhombic structure exists which differs from the former essentially by the presence of mirror planes parallel to the $a b$ plane in the C-centered description of the structure. The orthorhombic modifications of $\mathrm{Ti}_{2} \mathrm{Nb}_{10} \mathrm{O}_{29}$ and $\mathrm{Nb}_{12} \mathrm{O}_{29}$ may be looked upon as representing the $n=4$ members of an orthorhombic homologous series $\mathrm{Me}_{3 n} \mathrm{X}_{8 n-3}$, analogous to the monoclinic series discussed in this paper. No orthorhombic modification of $\mathrm{TiNb}_{2} \mathrm{O}_{7}(n=3)$ has been observed. Attempts to prepare an orthorhombic version of $\mathrm{MgNb}_{14} \mathrm{O}_{35} \mathrm{~F}_{2}$ by heat treatment at different temperatures have so far been without success. It is interesting to observe, however, that the twinning always found in the monoclinic crystals occurs on the $a b$ plane.

Detailed descriptions of the structural principles involved in this family of shear structures have been given recently (9), (10) and will not be repeated here.

Acknowledgments

The author wishes to thank Professor A. Magnéli for his encouraging interest and many valuable discussions and also Dr. S. Andersson for valuable advice.

This work has taken place within a research program supported by the Swedish Natural Science Research Council. Permission for the use of the computers FACIT EDB, CD 3600, and IBM 360/75 was granted by the Computer Division of the National Swedish Rationalization Agency (Kungl. Statskontoret).

References

1. A. D. Wadsley, Acta Cryst. 14, 660 (1961).
2. A. D. Wadsley, Acta Cryst. 14, 664 (1961).
3. R. S. Roth and A. D. Wadsley, Acta Cryst. 18, 724 (1965).
4. B. M. Gatehouse and A. D. Wadsley, Acta Cryst. 17, 1545 (1964).
5. S. Andersson, Z. Anorg. Allgem. Chem. 351, 106 (1967).
6. S. Andersson, Acta Chem. Scand. 18, 2339 (1964).
7. J. Galy and S. Andersson, Acta Cryst. B24, 1027 (1968).
8. R. Norin, Acta Chem. Scand. 17, 1391 (1965).
9. S. Andersson, Bull. Soc. Chim. France 1088 (1965).
10. R.S. Roth and A. D. Wadsley, Acta Cryst. 19, 42 (1965)-
